import matplotlib.pyplot as plt
import mnist_loader # noqa
import torch
import random
import torch.nn as nn # noqa
import network2Replication of some chapter 5 results
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
training_data = list(training_data)
validation_data = list(validation_data)
test_data = list(test_data)net = network2.Network([784, 30, 10])net.SGD(
training_data=training_data,
epochs=30,
mini_batch_size=10,
eta=0.1,
lmbda=5.0,
evaluation_data=validation_data,
monitor_evaluation_accuracy=True,
)Epoch 0 training complete
Accuracy on evaluation data: 9325 / 10000
Epoch 1 training complete
Accuracy on evaluation data: 9471 / 10000
Epoch 2 training complete
Accuracy on evaluation data: 9499 / 10000
KeyboardInterrupt: