import matplotlib.pyplot as plt
import mnist_loader # noqa
import torch
import random
import torch.nn as nn # noqa
import network2
Replication of some chapter 5 results
= mnist_loader.load_data_wrapper()
training_data, validation_data, test_data = list(training_data)
training_data = list(validation_data)
validation_data = list(test_data) test_data
= network2.Network([784, 30, 10]) net
net.SGD(=training_data,
training_data=30,
epochs=10,
mini_batch_size=0.1,
eta=5.0,
lmbda=validation_data,
evaluation_data=True,
monitor_evaluation_accuracy )
Epoch 0 training complete
Accuracy on evaluation data: 9325 / 10000
Epoch 1 training complete
Accuracy on evaluation data: 9471 / 10000
Epoch 2 training complete
Accuracy on evaluation data: 9499 / 10000
KeyboardInterrupt: